Hinweise auf Ursprung des Spin-Seebeck-Effekts entdeckt

Thermisch angeregte magnetische Wellen in Isolatoren ermöglichen Stromerzeugung

07.09.2015

Die Rückgewinnung von Abwärme in verschiedensten Prozessen stellt eine der Hauptherausforderungen unserer Zeit dar, um bestehende Prozesse energieeffizienter und somit umweltfreundlicher zu gestalten. Der Spin-Seebeck-Effekt (SSE) ist ein neuartiger, bisher nur rudimentär verstandener Effekt, der es ermöglicht, sogar in elektrisch nichtleitenden Materialien einen Wärmefluss in elektrische Energie zu konvertieren. Einem Team von Physikern der Johannes Gutenberg-Universität Mainz (JGU), der Universität Konstanz, der Technischen Universität Kaiserslautern und dem Massachusetts Institute of Technology (MIT) in den USA ist es nun gelungen, Hinweise auf den Ursprung des Spin-Seebeck-Effekts zu entdecken. Durch die gezielte Untersuchung der Material- und Temperaturabhängigkeit des Effekts konnte gezeigt werden, dass dieser eine charakteristische Längenskala aufweist, die auf seinen magnetischen Ursprung zurückzuführen ist. Diese Erkenntnis erlaubt nun die Weiterentwicklung des lange umstrittenen Effekts für erste Anwendungen. Die Forschungsarbeit wurde im Fachmagazin Physical Review Letters mit einem Stipendiaten der Exzellenz-Graduiertenschule "Materials Science in Mainz" (MAINZ) als Erstautor publiziert.

Der Spin-Seebeck-Effekt stellt einen sogenannten Spin-thermoelektrischen Effekt dar, der es ermöglicht, thermische Energie in elektrische Energie umzuwandeln. Im Gegensatz zu konventionellen thermoelektrischen Effekten ermöglicht dieser sogar die Rückgewinnung von Wärmeenergie in magnetischen Isolatoren kombiniert mit einer dünnen Metallschicht. Aufgrund dieser Tatsache wurde vermutet, dass thermisch angeregte magnetische Wellen der Ursprung des Effekts sind. Die aktuell genutzte indirekte Messmethode durch eine zweite metallische Schicht, die die magnetischen Wellen in eine elektrisch nachweisbare Spannung konvertiert, erlaubte bisher keine eindeutige Zuordnung der experimentell nachgewiesenen Signale.

Durch die Messung des Effekts für verschiedene Materialdicken über einen Bereich von wenigen Nanometern bis hin zu Mikrometern bei zusätzlich unterschiedlichen Temperaturen konnte ein charakteristisches Verhalten des Effekts gefunden werden. So nimmt die Signalstärke für dünne Schichten mit der Dicke des Materials zu, saturiert jedoch bei ausreichender Dicke. In Kombination mit der nachgewiesenen Zunahme dieser kritischen Materialdicke für tiefere Temperaturen konnte eine Überstimmung mit dem theoretischen Modell der thermisch angeregten magnetischen Wellen aufgezeigt werden. Mit diesen Ergebnissen konnte somit erstmals ein direkter Zusammenhang zwischen den vermuteten thermisch angeregten magnetischen Wellen und dem Effekt nachgewiesen werden.

"Dieses Ergebnis enthüllt einen wichtigen Baustein im Puzzle um das Verständnis dieses neuen komplexen Effekts, was unumstößlich dessen Existenz belegt", betont Andreas Kehlberger, Physik-Doktorand an der Johannes Gutenberg-Universität Mainz und Erstautor der Veröffentlichung.

"Ich freue mich, dass dieses spannende Ergebnis in Zusammenarbeit zwischen einem Doktoranden der Exzellenz-Graduiertenschule Materials Science in Mainz in meiner Gruppe und Mitarbeitern aus Kaiserslautern sowie Kollegen aus Konstanz, mit denen wir im Rahmen des DFG-Schwerpunktprogramms 'Spin Caloric Transport' kollaborieren, entstanden ist", so Prof. Dr. Mathias Kläui, Direktor der Exzellenz-Graduiertenschule MAINZ. "Es zeigt, dass komplexe Forschung erst in Teams – bestenfalls gefördert wie in diesem Fall beispielsweise auch durch das Bundesministerium für Bildung und Forschung im Rahmen des Mainz-MIT Seed Fund – möglich wird."

Die Graduiertenschule MAINZ wurde in der Exzellenzinitiative des Bundes und der Länder im Jahr 2007 bewilligt und erhielt in der zweiten Runde 2012 eine Verlängerung für weitere fünf Jahre. Sie besteht aus Arbeitsgruppen der Johannes Gutenberg-Universität Mainz, der Technischen Universität Kaiserslautern und des Max-Planck-Instituts für Polymerforschung. Einer der Forschungsschwerpunkte ist die Spintronik, wobei die Zusammenarbeit mit führenden internationalen Partnern eine wichtige Rolle spielt.