Johannes Gutenberg Universität Mainz Kopfbild
Home English Suche Index Kontakt Druckversion
 

  06.06.2006

Von Aerosolteilchen zu Wolkentröpfchen

Mainzer Forscher veröffentlichen in "Science"

Wolken spielen eine zentrale Rolle für Klimasystem und Wasserkreislauf der Erde. Das Verhalten einer Wolke hängt in hohem Maße von der Anzahl und Größe der Tröpfchen ab, aus denen sie besteht. Jedes dieser Tröpfchen benötigt zum Wachsen ein Aerosolteilchen als Keim, genannt Wolkenkondensationskern (Cloud Condensation Nucleus, CCN). Es ist deshalb wichtig zu verstehen, welche Eigenschaften es einem Aerosolteilchen ermöglichen, zu einem Wolkentropfen anzuwachsen. Einfache physikalisch-chemische Betrachtungen zeigen, dass dies in erster Näherung von der Anzahl der löslichen Moleküle abhängt, die das Teilchen enthält. Diese wiederum hängt von der Größe und Zusammensetzung der Moleküle ab. Wenn man sich die große Unterschiedlichkeit der Teilchen in der Atmosphäre vor Augen hält - wobei es sich zum Beispiel Meersalz, Staub und Rauch handeln kann – wird deutlich, dass die Komplexität ihrer Zusammensetzung lange als Haupthindernis für die Modellierung und Vorhersage von Aerosoleffekten auf die Wolkeneigenschaften und das Klima angesehen wurde.

Wie das Wissenschaftsmagazin "Science" berichtet, haben nun Forscher des Max-Planck-Instituts für Chemie und der Johannes Gutenberg-Universität in Mainz diesen Einfluss von Aerosolgröße und -zusammensetzung systematisch untersucht. Zur Trennung beider Effekte haben sie Umgebungsaerosole in enge Größenbereiche unterteilt (Durchmesser zwischen 40 und 120 Millionstel Millimeter) und dann deren chemische Zusammensetzung und Wachstumsfähigkeit untersucht. Die Messungen wurden im Sommer 2004 am Kleinen Feldberg im Taunus durchgeführt. Während der dreiwöchigen Messperiode wurden an der Bergstation sehr unterschiedliche Luftmassen vorgefunden: gealterte Kontinentalluft - reich an industriellen und Verkehrsschadstoffen, marine Luftmassen, die sehr rasch vom Nordatlantik herübergezogen waren, und frisch verschmutzte Luft aus dem dicht besiedelten und hoch industrialisierten Rhein-Main-Gebiet. Der Hauptbestandteil in allen Luftmassentypen war organisches Material, gefolgt von Ammonium, Sulfat und Nitrat. Bemerkenswerterweise schien sich der lösliche Anteil der Teilchen nicht allzu sehr zu unterscheiden, trotz der sehr unterschiedlichen Vorgeschichte der Luft.

Die Messungen der Mainzer Forscher zeigen, dass die Größe der Teilchen eine wesentlich wichtigere Rolle bei der Bildung von Wolkentropfen spielt als ihre Zusammensetzung. Der Hauptgrund hierfür ist, dass die Fähigkeit eines Teilchens, als Wolkenkondensationskern zu wirken, in erster Näherung von der Gesamtzahl der darin enthaltenen löslichen Moleküle abhängt. Diese Anzahl hängt in der dritten Potenz vom Teilchendurchmesser ab, aber nur linear vom löslichen Massenanteil, das heißt der Zusammensetzung.

Die Tatsache, dass zumindest bei den in Europa angetroffenen Aerosolen die Teilchenzusammensetzung nur von sekundärer Bedeutung für das Wachstum der Wolkentropfen ist, hat große praktische Vorteile. Die Abschätzung von CCN-Konzentrationen aus relativ einfachen Messungen wird dadurch wesentlich leichter, und deren Darstellung in Wolken- und Klimamodellen deutlich vereinfacht. Wenn man die typischen größenaufgelösten CCN-Wirkungsgrade für wichtige Gebiete und Aerosolarten kennt, können die CCN-Konzentrationen aus beobachteten oder modellierten Teilchengrößenverteilungen abgeschätzt werden. Daher sollten Feldversuche in verschiedenen Gebieten mit dem Ziel durchgeführt werden, eine Datensammlung solcher größenaufgelöster CCN-Wirkungsgrade zu erstellen. Bei Modellrechnungen sollten eher Anstrengungen unternommen werden, die Teilchengrößeverteilungen exakt vorherzusagen als die genaue chemische Zusammensetzung.

Die Ergebnisse der Mainzer Forscher bieten auch eine Grundlage für die Abschätzung von CCN-Häufigkeiten über größere Zeit- und Raumskalen aus Fernerkundungsdaten, da Aerosol-Teilchengrößeverteilungen wesentlich einfacher durch Fernerkundung zu erhalten sind als Teilchenzusammensetzungen.

Titel der Originalveröffentlichung: U. Dusek, G. P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, and M. O. Andreae: "Size matters more than chemistry for cloud nucleating ability of aerosol particles", Science, 2. Juni 2006



Druckversion
 

Kontakt Kontakt

Prof. Meinrat O. Andreae
Max-Planck-Institut für Chemie
+49 6131 305-421
E-Mail

Prof. Stephan Borrmann
Institut für Physik der Atmosphäre
Johannes Gutenberg-Universität
+49 6131 39-23396
E-Mail



Johannes Gutenberg-Universität Mainz, 23.06.2006   zum KontaktWebmaster   zum ImpressumImpressum    zum SeitenanfangSeitenanfang